Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683844

RESUMO

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Assuntos
Citoesqueleto , Proteínas de Drosophila , Drosophila melanogaster , Desenvolvimento Muscular , Proteínas de Ligação a RNA , Sarcômeros , Animais , Sarcômeros/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Desenvolvimento Muscular/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Splicing de RNA/genética , Miofibrilas/metabolismo , Voo Animal/fisiologia , Processamento Alternativo/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculos/metabolismo
2.
J Biol Chem ; 299(7): 104918, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315791

RESUMO

Unlike other members of the voltage-gated ion channel superfamily, voltage-gated proton (Hv) channels are solely composed of voltage sensor domains without separate ion-conducting pores. Due to their unique dependence on both voltage and transmembrane pH gradients, Hv channels normally open to mediate proton efflux. Multiple cellular ligands were also found to regulate the function of Hv channels, including Zn2+, cholesterol, polyunsaturated arachidonic acid, and albumin. Our previous work showed that Zn2+ and cholesterol inhibit the human voltage-gated proton channel (hHv1) by stabilizing its S4 segment at resting state conformations. Released from phospholipids by phospholipase A2 in cells upon infection or injury, arachidonic acid regulates the function of many ion channels, including hHv1. In the present work, we examined the effects of arachidonic acid on purified hHv1 channels using liposome flux assays and revealed underlying structural mechanisms using single-molecule FRET. Our data indicated that arachidonic acid strongly activates hHv1 channels by promoting transitions of the S4 segment toward opening or "preopening" conformations. Moreover, we found that arachidonic acid even activates hHv1 channels inhibited by Zn2+ and cholesterol, providing a biophysical mechanism to activate hHv1 channels in nonexcitable cells upon infection or injury.


Assuntos
Ácido Araquidônico , Colesterol , Ativação do Canal Iônico , Canais Iônicos , Prótons , Zinco , Humanos , Albuminas/farmacologia , Ácido Araquidônico/farmacologia , Colesterol/farmacologia , Transferência Ressonante de Energia de Fluorescência , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Canais Iônicos/metabolismo , Lipossomos/metabolismo , Fosfolipases A2/metabolismo , Imagem Individual de Molécula , Zinco/farmacologia , Concentração de Íons de Hidrogênio
3.
Metabolites ; 13(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367877

RESUMO

Myostatin (gene symbol: Mstn) is an autocrine and paracrine inhibitor of muscle growth. Pregnant mice with genetically reduced levels of myostatin give birth to offspring with greater adult muscle mass and bone biomechanical strength. However, maternal myostatin is not detectable in fetal circulations. Fetal growth is dependent on the maternal environment, and the provisioning of nutrients and growth factors by the placenta. Thus, this study examined the effect of reduced maternal myostatin on maternal and fetal serum metabolomes, as well as the placental metabolome. Fetal and maternal serum metabolomes were highly distinct, which is consistent with the role of the placenta in creating a specific fetal nutrient environment. There was no effect from myostatin on maternal glucose tolerance or fasting insulin. In comparisons between pregnant control and Mstn+/- mice, there were more significantly different metabolite concentrations in fetal serum, at 50, than in the mother's serum at 33, confirming the effect of maternal myostatin reduction on the fetal metabolic milieu. Polyamines, lysophospholipids, fatty acid oxidation, and vitamin C, in fetal serum, were all affected by maternal myostatin reduction.

4.
J Biol Chem ; 299(3): 102967, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736429

RESUMO

High-resolution structures of voltage-gated sodium channels (Nav) were first obtained from a prokaryotic ortholog NavAb, which provided important mechanistic insights into Na+ selectivity and voltage gating. Unlike eukaryotic Navs, the NavAb channel is formed by four identical subunits, but its ion selectivity and pharmacological profiles are very similar to eukaryotic Navs. Recently, the structures of the NavAb voltage sensor at resting and activated states were obtained by cryo-EM, but its intermediate states and transition dynamics remain unclear. In the present work, we used liposome flux assays to show that purified NavAb proteins were functional to conduct both H+ and Na+ and were blocked by the local anesthetic lidocaine. Additionally, we examined the real-time conformational dynamics of the NavAb voltage sensor using single-molecule FRET. Our single-molecule FRET measurements on the tandem NavAb channel labeled with Cy3/5 FRET fluorophore pair revealed spontaneous transitions of the NavAb S4 segment among three conformational states, which fitted well with the kinetic model developed for the S4 segment of the human voltage-gated proton channel hHv1. Interestingly, even under strong activating voltage, the NavAb S4 segment seems to adopt a conformational distribution similar to that of the hHv1 S4 segment at a deep resting state. The conformational behaviors of the NavAb voltage sensor under different voltages need to be further examined to understand the mechanisms of voltage sensing and gating in the canonical voltage-gated ion channel superfamily.


Assuntos
Proteínas de Bactérias , Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Conformação Proteica , Canais de Sódio Disparados por Voltagem/metabolismo , Bactérias , Proteínas de Bactérias/metabolismo
5.
Mol Reprod Dev ; 87(9): 927-929, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32869432

RESUMO

Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by mutations in genes encoding type I collagen or proteins that process it. Women with OI have a small, but significant increase in risk of serious pregnancy complications including uterine rupture. Here, the OI mouse, Col1a2oim/oim , was used to examine the effects of collagen mutation on establishment and maintenance of pregnancy. Picrosirius birefringence was faint in Col1a2oim/oim uteri, indicating diminished collagen in the myometrium and endometrium. There was some evidence of increased uterine gland number (p = .055) and size (p = .12) in (p = .055) virgin uteri, though the they were not significantly different than controls. There were no differences in the number of corpora lutea, or the time from pairing to delivery of pups between Col1a2oim/oim and control dams, suggesting that ovulation and conception occur normally. However, when examined at Gestation Day 6.5 (postimplantation), gestation Day 10.5 (midpregnancy), and Postnatal Days 1-2, Col1a2oim/oim dams had significantly fewer viable pups than controls overall. In pairwise comparisons, the loss was only significant in the postnatal group, suggesting the gradual loss of pups over time. Overall, the Col1a2oim/oim mouse data suggest that OI impairs uterine function in pregnancy in a way that affects a small but significant number of fetuses.


Assuntos
Infertilidade Feminina/etiologia , Osteogênese Imperfeita/complicações , Animais , Colágeno Tipo I/genética , Modelos Animais de Doenças , Feminino , Fertilidade/genética , Viabilidade Fetal/genética , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Tamanho da Ninhada de Vivíparos/genética , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Gravidez , Gravidez de Alto Risco/genética
6.
Nat Commun ; 8(1): 1790, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29176630

RESUMO

Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability.


Assuntos
DNA Helicases/fisiologia , Reparo do DNA/genética , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Resolvases de Junção Holliday/metabolismo , Ligação Proteica/fisiologia , Rad51 Recombinase/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA